
State estimation of measured quantities provided over wire-
less sensor networks (WSN) has attracted attention in recent
decades due to the ability to create measurement environments
over big areas for navigation, target tracking, manufacturing
control, and communication [1]–[8]. A common weakness
of such systems is associated with the influence of sensor
uncertainties, random transmission delays, and packet dropouts
causing estimation failures and deteriorating the performance
significantly [9], [10].

To avoid large estimation errors caused by latency and
packet dropout, various filtering algorithms have been devel-
oped during the last decades to address the phenomena sep-
arately [11]–[13], even though they practically occur jointly
[14], [15]. The game theory H∞ filter is applied in [16]–[18]
to network system considering different phenomena such as
noise covariances, one-step delayed data, and multiplicative
packed dropouts. Other techniques such as the recursive state
estimation [19] and the Kalman filter (KF) [20], [21] have
been applied to non-linear WSN-based systems. The particle
filter [22] and robust L1 filter, which minimizes the peak-to-
peak errors, have been developed for delayed data in [23].

The Bernoulli distribution is most widely used to model
latency and develop estimation algorithms [24], [25]. Even
so, a big challenge still exists to design efficient algorithms
under lost data. The Bernoulli distribution thus requires a
modification to deal with the probability of lost data [26], [27].
Here, the zero-input procedure with a predictive algorithm is
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considered to include the packet dropouts to the observation
model using the Bernoulli distribution.

A drawback of the traditional KF is the dependence on the
incomplete knowledge about the system and environmental
noise. Accordingly, the KF-based estimators often produce
large errors when the conditions of optimality are not obeyed

properly. This fact was recently pointed out in [28], where
the KF and game theory H∞ filter [29] were compared for
robustness to the unbiased finite impulse response (UFIR) filter
[30], which ignores any information about zero-mean noise
and initial values and is thus robust by design. For time-
stamped delays and missing data, the UFIR filter was orig-
inally designed in [31]. For systems with randomly delayed
and missing data the UFIR approach still has not been applied
that motivates our present work. In this paper, we develop the
UFIR filter for systems with Bernoulli-distributed randomly-
delayed and missing data. A better performance of the UFIR
filter compared with the KF and H∞ is demonstrated under
different scenarios of the tracking problem.

As has been mentioned above, measurement data trans-
mitted over a WSN typically arrive at a receiver with la-
tency and packet dropouts originated from different sources.
Understanding an importance of the mathematical model to
design an efficient filtering algorithm, the following model
using a Bernoulli distribution is presented to depict the real
behavior of the transmitted data. We assume that each data
are transmitted and received only once, hence one-step packet
dropouts may happen. In Fig.1, we show typical scenarios with
the transmitted/received data. It is assumed that data arrive at
the correct time t1 if received as x(1)1 and x(1)2 . If at time t2
data are received as x(2)1 , then such data are one-step delayed
with respect to time t1 and this information will be lost at t1.
The observation can be modeled similarly to [35] as

zn = γ0,nyn + (1− γ0,n) [(1− γ0,n−1) γ1,nyn−1

+ (1− (1− γ0,n−1)γ1,n) z̃n] , (1)

where a zero input compensation with prediction are using to
substitute wrong and missing data, zn ∈ RM is the transmitted
measurement vector at the processor, z̃n ∈ RM is the predicted
measurement, and x̂n−1 is the available estimate.
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TABLE I
DATA RECEIVED WITH PACKET DROPOUTS USING A ZERO-INPUT COMPENSATOR

n 1 2 3 4 5 6 7 8 9 10
θ0 1 0 0 1 0 1 0 0 1 0
θ1 – 1 1 – 0 0 0 1 – 1
θ2 – – – – 0 – 1 – – –
Z(n) y(1) z̃(2) y(2) y(4) z̃(5) y(6) y(5) y(7) y(9) z̃(10)

Fig. 1. Typical scenarios in WSN channels with latency. A regular mode is
when data are received as x(1)1 and x(1)2 . When data are received as x(2)1 and
x
(1)
2 , then x1 will be one-step delayed and x2 lost. When data are received as
x
(1)
1 and x(2)2 , then x2 will be one-step delayed with no missing information.

Now, suppose that dynamics state estimation and the mea-
surement observation are represented with the linear discrete-
time state-space model

xn = Fxn−1 + wn , (2)
yn = Hxn + vn , (3)
z̃n = HFx̂n−1 , (4)

where n is the discrete time index, xn ∈ RK is the state
vector, yn ∈ RM is the measured output vector, z̃n ∈ RM
is the predictive vector and F ∈ RK×K and H ∈ RK×M
are known matrices. White Gaussian noise vectors wn ∼
N (0, Q) ∈ RK and vn ∼ N (0, R) ∈ RM have zero
mean, the covariances Q = E{wnwTn } ∈ RK×K and R =
E{vnvTn } ∈ RM×M . The process wn and vn are mutually
independent, then E{wnvTn } = 0 for all n. Here, γ0,n and γ1,n
denote sequences of Bernoulli random variables with known
probabilities P{γ0 = 1} = γ0 and P{γ1 = 1} = γ1.

It follows from (1) that if γ0 = 1 holds at time n then the
output is assigned as zn = yn with the probability γ0,n. If
γ0 = 0 holds at n, then the delays and packet drop-outs may
happen. In this cases, if γ0 = 0 holds at n− 1 and γ1 = 1 at
n, then the one-step delayed data yn−1 will be processed at n
with the probability (1−γ0,n)(1−γ0,n−1)γ1,n. Otherwise, the
information will be lost and will be recovered by the predictive
algorithm z̃n with the probability 1 − γ0,n − (1 − γ0,n)(1 −
γ0,n−1)γ1,n. Examples of such scenarios are given in Table
I for data received on time as y1, y4, y6 and y9; one-step
delayed as y2 and y7; two-step delayed as y5, and completely
lost as y3,y8 and y10.

Given the state-space model (1)-(2), the UFIR filter, KF,
and game theory H∞ filter can be developed for randomly
delayed and missing data as will be shown next.

To simplify the mathematical derivations, the observation
equation can be rewritten as

zn = α0,nyn + α1,nyn−1 + α2,nz̃n , (5)

where, taking into account that α0,n + α1,n + α2,n = 1, the
auxiliary coefficients can be defined by

α0,n = γ0,n , (6)
α1,n = (1− γ0,n)(1− γ0,n−1)γ1,n , (7)
α2,n = (1− γ0,n)[1− (1− γ0,n−1)γ1,n] , (8)

for which the properties of the Bernoulli distribution with i =
0, 1, 2 are denoted as

E{(αi)(αi)} = ᾱi ,

E{(1− αi)(1.αi)} = 1− ᾱi , (9)

To represent the kn-step delayed state xn−kn via the current
state xn, we reorganize (1) to have the backward-in-time
solution [36]:

xn−kn = F−kn

(
xn −

kn−1∑
i=0

F iwn−i

)
. (10)

Assuming that kn = 1 and substituting the delayed state
xn−1 = F−1 (xn − wn) and yn (1) into (5), we obtain the
new observation equation, which has no latency,

zn = α0,n(Hxn + vn) + α1,n(Hxn−1 + vn−1)

+α2,n(HFxn−1) ,

= α0,n(Hxn + vn) + α1,n(H(F−1(xn − wn))

+vn−1) + α2,n(HF (F−1(xn − wn)) ,

=
(
α0,nH + α1,nHF

−1 + α2,nH
)
xn +

α0,nvn + α1,nvn−1 −
(
α1,nHF

−1 + α2,nH
)
wn ,

= H̄nxn + v̄n , (11)

where the modified observation matrix H̄n and white Gaussian
noise vector v̄n are given by

H̄n = (α0,n + α2,n)H + α1,nHF
−1 , (12)

v̄n = α0,nvn + α1,nvn−1

−(α1,nHF
−1 + α2,nH)wn (13)

and the noise covariances R̄n = E{v̄nv̄Tn } and Qn =
E{wnwTn } are given with

R̄n = ᾱ0,nRn + ᾱ1,nRn−1 + ᾱ1,nHF
−1QHTF−1

T

+ᾱ2,nHQH
T . (14)

3. State-Space Model Transformation 
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Note that the noise vector v̄n and wn are time-correlated
in (13). Since an optimal estimate is guaranteed under the
independence of noise vectors, the de-correlation is required
as will be shown next.

¯

To de-correlate the noise vectors v̄n and wn, the Lagrange
multiplier method can be used as proposed in [32], [33]. The
approach suggests that the state equation must be subjected to
a de-correlating condition as

xn = Fxn−1 + wn + Λn
(
zn − H̄nxn − v̄n

)
(15)

= Anxn−1 + un + ζn ,

where zn is a vector of real data, An = F − ΛnH̄nF , un =
Λnzn, and ζn = (I−ΛnH̄n)wn−Λnv̄n. Our desire is to have
a noise vector ζn such that ζn ∼ N (0, Qζ) ∈ RK has the
covariance Qζ = E{ζnζTn } defined by

Qζ = (I − ᾱ0,nΛnH)Q(I − ᾱ0,nΛnH)T

+ᾱ0,nΛnRnΛTn + ᾱ1,nΛnRn−1ΛTn . (16)

The Lagrange multiplier Λn can now be derived to satisfy
the desired property of

0 = E{ζnv̄Tn }
= E{[(I − ΛnH̄n)wn − Λnv̄n]v̄Tn }
= E{[(I − α0ΛnHn)wn − α0Λnvn − α1Λnvn−1]

[α0vn + α1vn−1 − (α1HnF
−1
n + α2Hn)wn]T }

and further transformations yield

Λn = −Qn(ᾱ1,nHnF
−1
n + ᾱ2,nHn)T (ᾱ0,nRn

+ᾱ1,nRn−1)−1 . (17)

Provided the de-correlation of noise vectors ζn and v̄n, the
estimation algorithms can be developed accordingly.

In this section, the UFIR filter will be developed for systems
represented with an uncertain observations model (12). Due to
the ability of the UFIR filter to ignore zero mean noise [32]
and because time-correlation does not produce bias errors, this
filter can be applied straightforwardly. On the contrary, the KF
and H∞ filter require the noise de-correlation.

The UFIR filter is the convolution-based structure that
satisfies the unbiasedness condition E{xn} = E{x̂n} to
ensure the unbiasedness. The batch UFIR filter produces an
estimate over an averaging horizon [m,n] of N points, where
m = n−N+1 and the horizon length is required to be optimal
as Nopt to minimize the mean square error (MSE). This filter
does not require any information about zero mean noise and
initial values [34].

To design the batcg UFIR filter, we consider the following
model expanded on [m,n] [34],

Xm,n = ANxm +BNWm,n , (18)
Ym,n = Hm,nxm +Gm,nWm,n + Vm,n , (19)

where Xm,n = [xTm x
T
m+1 . . . x

T
n ]T and Ym,n =

[yTm y
T
m+1 . . . y

T
n ]T are extended vectors and the extended

matrices are defined as

AN = [I FT . . . FN−1
T

]T , (20)

BN =


I 0 . . . 0 0
F I . . . 0 0
...

...
. . .

...
...

FN−2 FN−3 . . . I 0
FN−1 FN−2 . . . F I

 , (21)

Hm,n =


H̄m

H̄m+1F
...

H̄nF
n−1

 , (22)

Gm,n = H̄m,nDm,n, H̄m,n = diag(H̄m H̄m+1 . . . H̄n), and
matrix H̄n is specified with (14).

The batch UFIR filtering estimate is given by [34]

x̂n = FN−1(HT
m,nHm,n)−1HT

m,nYm,n (23a)

= GnCTm,nCTm,nYm,n (23b)
= Hm,nYm,n , (23c)

where Hm,n is the filter gain, the generalized noise power gain
(GNPG) is given by

Gn = (CTm,nCm,n)−1 , (24)

Ym,n is a vector of real data, matrix Cm,n is defined as

Cm,n =


H̄mF

−N+1

...
H̄n−1F

−1

H̄n

 , (25)

and the latency-dependent matrix H̄n is given by (14).

Given the coefficients α0,n, α1,n, and α2,n and the initial
estimate at s = n − N + K computed in a short batch form
(23c) over [m, s], the iterative UFIR filter computes estimates
recursively on a horizon [m,n] for the initial estimate at s =
n − N + K. A pseudo code of the iterative UFIR filtering
algorithm for delayed and missing data is listed as Algorithm
1.

In this section, a numerical example of the maneuvering
vehicle tracking is considered to test the performances of the
UFIR, Kalman, and H∞ filtering algorithms under the ran-
domly delayed and missing measurement data. The purpose is
to investigate advantages and disadvantages of the algorithms

3.1. De-Correlation of wn and un 

4. Filters Design for Delayed and  
Missing Data

 

4.1. Batch UFIR Filter 

4.2. Iterative UFIR Algorithm  Using Recursions 

5. Applications 

WSEAS TRANSACTIONS on SIGNAL PROCESSING 
DOI: 10.37394/232014.2020.16.21 Karen Uribe-Murcia, Yuriy S. Shmaliy

E-ISSN: 2224-3488 193 Volume 16, 2020



Algorithm 1: Iterative UFIR Filtering Algorithm for
Delayed and Missing Data
Data: yn, α0,n, α1,n, α2,n, N , κn
Result: x̂n

1 begin
2 for n = N − 1 :∞ do
3 m = n−N + 1, s = n−N +K;
4 if κn = 0 then
5 yn = HFx̂n−1
6 end if
7 H̄n = (α0,n + α2,n)H + α1,nHF

−1;
8 Compute Cm,s by (20);
9 Gs = (CTm,sCm,s)−1;

10 x̃s = GsCTm,sYm,s;
11 for l = s+ 1 : n do
12 Gl = [H̄T

l H̄l + (FGl−1FT )−1]−1;
13 KU

l = GlH̄T
l ;

14 x̃l = Fx̃l−1 +KU
l (yl − H̄lFx̃l−1);

15 end for
16 x̂n = x̃n;
17 end for
18 end
19 † Data y0, y1,... and Ym,s

under the same operation conditions. We consider a vehicle
trajectory measured using a GPS reader in the Cook County of
Illinois and available from the University of Illinois at Chicago
[37]. The GPS-based vehicle trajectory in the local north and
east coordinates is shown in Fig. 2.
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Fig. 2. GPS-measured vehicle trajectory in the local north (y) and east (x)
coordinates.

Because information about the vehicle and its measurement
is limited and no noise statistics are provided, we specify the
vehicle trajectory and the process model as in the following.
• The state model (2) is described to have two states in

each of the directions, K = 4, the state vector xn =

[x1n x2n x3n x4n]T has the components x1n = xn,
x2n = x′n, x3n = yn, and x4n = y′n, and matrices are

F =


1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1

 , B =


τ
2 0
1 0
0 τ

2
0 1

 .
• The observation is represented with (1) with the proba-

bilities γ̄0 = 0.7 and γ̄1 = 0.8 and observation matrix

H =

[
1 0 0 0
0 0 1 0

]
.

• The system noise and observation noise are supposed to
be zero mean and white Gaussian. Supposing that the
vehicle has an average speed of about 15 m/s, we assign
the velocity noise standard deviation as σ2w = 1.5 m/s
and neglect noise in the distance, σ1w = 0 m. The GPS
service guarantees an error of smaller than 15 meters with
the probability of 95% in the 2σ sense. We thus set σv =
3.75 m and define the noise covariances as

Q = σ2
w2


τ2

4
τ
2 0 0

τ2

2 1 0 0

0 0 τ2

4
τ
2

0 0 τ2

2 1

 , R =

[
σ2
v 0

0 σ2
v

]
.

• The tuning factor of the UFIR filter (Nopt) is determined
to minimize the MSE in the UFIR filter by solving the
minimization problem

Nopt = arg min
N

[trPn(N)] ,

where Pn is the error covariance. For the trajectory
shown in Fig. 1, the optimal horizon was found to be
Nopt = 5.

• The optimum tuning factor θopt for the H∞ filter is
determined by minimizing the MSE. The value θopt needs
to be kept accurately in view of a high sensitivity of
the H∞ filter to θ. Otherwise, this filter may diverge
[28], [36]. In this paper, we apply θopt ∼= 0.02 found
experimentally to the entire trajectory.

The estimates produced by the properly tuned UFIR filter,
KF, and H∞ filter are sketched in Fig 3. It follows that all
estimates are consistent with poorly distinguishable differences
despite data failures. The prediction option is used when
some data are lost as shown in Fig 3. Effect of the missing
measurement phenomenon is illustrated in Fig 4 and it is seen
that the estimation errors grow due to fast changes in the
trajectory. Even so, the UFIR filter demonstrates an ability
to converge faster to the regular mode than other filters due to
the inherently bounded input bounded output (BIBO) stability.

Assuming that measurements are transmitted with the prob-
abilities γ0 = 0.7 and γ1 = 0.8 at each n, we next investigate
the estimation errors caused by errors in γ0. The aim is to

5.1. Tracking State-Space Model 

5.2. Effect of Probabilistic Errors in γ0 
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Fig. 3. GPS-based vehicle tracking in the x,m direction by the UFIR filter,
KF, and H∞ filter using model (1)–(10).
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Fig. 4. Tracking error produced by the UFIR filter, KF, and H∞ filter in the
x,m direction (1)–(4).

investigate the impact of the transmission probability γ0 on
the RMSE. We thus assume that γ0 varies from 0.1 to 0.9
and sketch the RMSEs as functions of γ0 in Fig 5. What
follows now is that the decrease in γ0 results in growing errors,
which means that the minimum tracking errors can be obtained
only if the data transmission probability is equal to that in the
algorithms. The KF errors range lower than in the UFIR filter
for all γ. The H∞ improves the performance when γ > 0.4,
but produces rapidly growing large errors when γ < 0.3 and
diverges when γ < 0.1.

The noise statistics and error matrices are typically not well
defined in object tracking. To investigate effects of the relevant
errors on the estimator performance, we next introduce a scalar
scaling error factor β [36] and substitute in the algorithms
Q = Q̌ with Q/β2 and R = Ř with β2R.

The RMSEs produced for the UFIR filter, KF, and H∞
filter under β 6= 1 are displayed in Fig 6 as functions of β.
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Fig. 5. Effect of a scalar scaling error factor β on the RMSEs produced by
the UFIR filter, KF, and H∞ filter in the y direction.

Inherently, the UFIR filter performance is β-invariant, while
the KF and H∞ filter have different sensitivities to β that
affect their performances. It is especially true for the H∞ filter,
which diverges beyond the interval of 0.5 < β < 1.0.
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Fig. 6. Effect of the data transmission probability γ on the RMSEs produced
by the UFIR filter, KF, and H∞ filter in the y direction.

The UFIR filter, KF, and game theory H∞ filter developed
in this paper for randomly delayed binary Bernoulli-distributed
data with packet dropouts have demonstrated a better perfor-
mance than the standard filters. The effect was achieved by
transforming the discrete-time state-space model to have no
latency and extending the transformed model on a horizon of
N past data points. The problem with missing data was solved
using a prediction option. An experimental example of GPS-
based vehicle tracking has demonstrated that the UFIR filter
generally outperforms both the KF and H∞ filter and is not
prone to divergency.

5.3. Effect of Errors in Noise Covariances 

6. Conclusions 
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